Publications

This section brings together the main scientific outputs developed by professors, researchers, and collaborators of the Minas Gerais Network for Biostimulants and Enhanced-Efficiency Fertilizers. The articles, book chapters, and papers in international journals represent significant advances in the fields of agricultural and chemical sciences, sharing innovative technological discoveries. These publications reflect the team’s commitment to excellence in research and the ongoing collaboration among partner institutions, consolidating the Network as a hub of scientific and technological innovation. By disseminating this knowledge, we strengthen the scientific foundation necessary for creating public policies, more sustainable agricultural practices, and new impactful products for society.

Articles

112. Dohanik, C. et al. Exploring Amino Acid-Derived Thiohydantoins as Promising Plant Growth Regulators. J Plant Growth Regul (2025).DOI

111. Guimarães et al. (2024). Flavone-rich Passiflora edulis fruit shells as urease inhibitors for sustainable agricultural solutions. Theoretical and Experimental Plant Physiology, 36, 193–206. DOI

110. Viana et al. (2024). Synergizing structure and function: Cinnamoyl hydroxamic acids as potent urease inhibitors. BIOORGANIC CHEMISTRY, v. 146, p. 107247. DOI

109. Paiva et al. (2024). Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Frontiers in Microbiology, 15, 1–13.DOI

108. Marques et al. (2024). Azospirillum brasilense inoculation improves the morphophysiological aspects of maize in soils with high and low nitrogen contents. Revista Brasileira de Milho e Sorgo (Online), 23, 1–14. DOI

107. Eloisa Vendemiatti et al.(2024) Woolly mutation with the Get02 locus overcomes the polygenic nature of trichome-based pest resistance in tomato, Plant Physiology, Volume 195, Issue 2, June 2024, Pages 911–923. DOI

106. Lopes et al. (2023). Methods to quantify the nitrogen derived from fertilizer in maize applying blends of controlled-release and NBPT-treated urea. Journal of Plant Nutrition, 46(19), 3021–3031.DOI

105. Soares et al. (2023). Dynamics of ammonia volatilization from NBPT-treated urea in tropical acid soils. Scientia Agricola, 80, e20220082. DOI

104. Rosetto et al. (2023). Controlled-release urea for use in sugarcane ratoons. Sugar Industry-Zuckerindustrie, 148(3), 152–156.DOI

103. Tavares et al. (2023). Influence of N-alkyl chains in benzoyl-thiourea derivatives on urease inhibition in soils. Biophysical Chemistry, 293, 106872. DOI

102. Castro et al. (2023). Stabilized urea for maize grown on an Amazonian Cerrado soil. Agronomy Journal, 115(5), 3349–3361. DOI

101. Marques et al. (2023). Does Azospirillum brasilense mitigate water stress and reduce the use of nitrogen fertilizers in maize? South African Journal of Botany, 156, 278–285. DOI

100. Bini et al. (2023). Parameter evaluation for developing phosphate-solubilizing Bacillus inoculants. Brazilian Journal of Microbiology (Online), 55, 737–748. DOI

99. Marques et al. (2023). Azospirillum brasilense reduces the effects of water stress and increases maize yield in irrigated areas with high soil nitrogen doses. Journal of Plant Growth Regulation, 42, 4263–4274. DOI

98. Cerqueira et al. (2023). Anthocyanins and reactive oxygen species: a team of rivals regulating plant development?. Plant Molecular Biology, 112, 213–223. DOI

97. Lopez-Ortiz et al. (2023). QTL and PACE analyses identify candidate genes for anthracnose resistance in tomato. Frontiers in Plant Science, 14, 1. DOI

96. Oliveira et al. (2022). Soil pH and nitrification inhibitor efficiency with vinasse + urea. Geoderma, 406, 115506. DOI

95. Tavares et al. (2022). Urease inhibition in soil system by benzylisothiocyanate from Moringa oleifera. Industrial Crops and Products, 186, 115171. DOI

94. Ali et al. (2022). Overexpression of Terpenoid Biosynthesis Genes Modifies Root Growth and Nodulation in Soybean (Glycine max). Cells, 11(17), 2622. DOI

93. Márquez Gutiérrez et al. (2022). Genome-Wide Analyses of MADS-Box Genes in Humulus lupulus L. Reveal Potential Participation in Plant Development, Floral Architecture, and Lupulin Gland Metabolism. Plants, 11(9), 1237. DOI

92. Ribeiro et al. (2022). Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize. Archives of Microbiology, 204, 243. DOI

91. Eden et al. (2021). Eficiência da adubação nitrogenada associada ao inibidor de urease no cultivo de girassol-mexicano irrigado. Research, Society and Development, 10(5), e4010514525. DOI

90. Moreira et al. (2021). Urea- Versus Ammonium Nitrate-Based Fertilizers for Green Sugarcane Cultivation. Journal of Soil Science and Plant Nutrition, 21, 147–158. DOI

89. Tavares et al. (2021). Paper-based device for urease activity determination in soils. Talanta, 232, 122463. DOI

88. Werneck et al. (2021). Ammonia volatilization and agronomical efficiency of a mixture of urea with natural zeolite for rose fertilization. Pesquisa Agropecuária Brasileira (Online), v. 56, p. 1-9. DOI

87. Paiva et al. (2021). Azospirillum brasilense inoculation combined with different levels of nitrogen fertilization and its effects in grain sorghum subjected to water restriction. Revista Brasileira de Milho e Sorgo (Online), 20, 1–19.DOI

86. Alves et al. (2021). Agronomic evaluation of Herbaspirillum seropedicae strain ZAE94 as an inoculant to improve maize yield in Brazil. Pedosphere, 31, 583–595.DOI

85. Marques et al. (2021). Gas exchange, root morphology and nutrients in maize plants inoculated with Azospirillum brasilense cultivated under two water conditions. Brazilian Archives of Biology and Technology (Online), 64, 1–11.DOI

84. Alves et al. (2021). Tecnologia biológica para controle de Fusarium verticillioides e aumento da absorção de N no milho empregando Paenibacillus polymyxa. Boletim de Pesquisa e Desenvolvimento, 236, 1–34. DOI

83. Paiva et al. (2021). Azospirillum brasilense para mitigação do estresse hídrico no sorgo BRS 332 submetido a diferentes doses de nitrogênio. Boletim de Pesquisa e Desenvolvimento, 224, 1–33.DOI

82. Coelho et al. (2021). Tecnologias e estratégias para aumentar a eficiência de uso de reservas de fósforo acumuladas em Latossolo Vermelho no bioma Cerrado. Boletim de Pesquisa e Desenvolvimento, 230, 1–48. DOI

81. Paiva et al. (2021). Caracterização ecofisiológica de sorgo granífero inoculado por Azospirillum brasilense e submetido à restrição hídrica. Caderno Saberes, 7, 46. DOI

80. Ahmad et al. (2021). Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. Journal of Experimental Botany, 72(4), 1349–1369. DOI

79. Chaves-Silva et al. (2020). Do schiff bases-based urease inhibitors improve plant growth and affect soil arginase? Industrial Crops and Products, 154, 112656. DOI

78. Leite et al. (2020). Co-addition of humic substances and urea enhances foliar N use efficiency in sugarcane. Heliyon, 6(6).DOI

77. Lopes et al. (2020). 15N-Fertilizer Recovery in Maize as Affected by Blends of Controlled-Release and Conventional Urea. Agronomy, 10(11), 1766. DOI

76. Lopes et al. (2020). Nitrogen Fertilization Management with Blends of Controlled-Release and Conventional Urea Affects Common Bean Growth and Yield. Agronomy, 10(9), 1386. DOI

75. Nunes et al. (2020). Potential of Alginate and Mesoporous Carbon to Improve the Fertilizer Value of Urea. Communications in Soil Science and Plant Analysis, 51(17), 2257–2269. DOI

74. Marques et al. (2020). Azospirillum brasilense favors morphophysiological characteristics and nutrient accumulation in maize cultivated under two water regimes. Revista Brasileira de Milho e Sorgo (Online), 19, 1–17. DOI

73. Paiva et al. (2020). Inoculantes de microrganismos solubilizadores de fósforo. Documentos, 122, 219–221.DOI

72. Marriel et al. (2020). Recomendação agronômica de cepas de Bacillus subtilis (CNPMS B2084) e Bacillus megaterium (CNPMS B119) na cultura do milho. Circular Técnica, 260, 1–19. DOI

71. Malle et al. (2020). A Malian native Azospirillum sp. Az6-based biofertilizer improves growth and yield of both rice (Oryza sativa L.) and maize (Zea mays L.). African Journal of Microbiology Research, 14, 286–293. DOI

70. Oliveira et al. (2020). Viabilidade técnica e econômica do Biomaphos® (Bacillus subtilis CNPMS B2084 e Bacillus megaterium CNPMS B119) nas culturas de milho e soja. Boletim de Pesquisa e Desenvolvimento, 210, 1–20. DOI

69. Sousa et al. (2020). Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. Journal of Plant Growth Regulation, 14, 1–11. DOI

68. Mattos et al. (2020). Sorghum genotypes response to inoculation with phosphate solubilizing bacteria. Revista Brasileira de Milho e Sorgo (Online), 19, 14. DOI

67. Almeida et al. (2019). Polymer-Coated Urea in Broadcast or Furrow Application in the Corn-Palisadegrass Intercropping System. Journal of Agricultural Science, 11(11), 283–296. DOI

66. Lopes et al. (2019). Effect of nitrogen rates applying controlled-release and conventional urea blend in maize. Journal of Plant Nutrition, 42(9), 947–959. DOI

65. Lopes et al. (2019). Placement Effect of Controlled-release and Conventional Urea Blend in Maize. Communications in Soil Science and Plant Analysis, 50(18), 2289–2299. DOI

64. Paiva et al. (2019). Value of Functionalized Charcoal for Increasing the Efficiency of Urea N Uptake. Revista Brasileira de Ciência do Solo, 43, e0180132. DOI

63. Muniz et al. (2019). Pre-emergence Application of (Thio)urea Analogues Compromises Development of Weed Species. Journal of Advanced Research, 16, 99–107. DOI

62. Muniz et al. (2019). Pre-emergence Application of (Thio)urea Analogues Compromises Development of Weed Species. Journal of Advanced Research, 16, 99–107. DOI

61. Rinaldi et al. (2019). N-Urea efficiency in maize as influenced by humic substances and urease inhibitors. Communications in Soil Science and Plant Analysis, 50(22), 2875–2885. DOI

60. Godinho et al. (2019). Isolamento e potencial uso de bactérias do gênero Bacillus na promoção de crescimento de plantas em condições de déficit hídrico. Boletim de Pesquisa e Desenvolvimento, 192, 1–26.DOI

59. Cantarella et al. (2018). Agronomic Efficiency of NBPT as a Urease Inhibitor: A review. Journal of Advanced Research, 13, 19–27. DOI

58. Garcia et al. (2018). Nitrogen use efficiency and nutrient partitioning in maize as affected by urea application methods. Archives of Agronomy and Soil Science, 64(6), 815–827. DOI

57. Gava et al. (2018). Nitrogen source contribution in sugarcane inoculated with diazotrophic bacteria under urea fertigation. Sugar Tech, 20, 191–199. DOI

56. Modolo et al. (2018). Urease inhibitors of agricultural interest since mid-2000s: minireview. Journal of Advanced Research, 13, 19–27. DOI

55. Schoninger et al. (2018). Corn grain yield and 15N-fertilizer recovery as a function of urea sidedress timing. Anais da Academia Brasileira de Ciências, 90(3), 2527–2539. DOI

54.Oliveira et al. (2018). Inoculantes de microrganismos promotores de crescimento em milho: transferindo a diversidade do laboratório para o campo. Série Documentos, Embrapa Milho e Sorgo, 21, 1–21. DOI

53. Sousa et al. (2018). Cepas de Bacillus e Azospirillum aumentam o crescimento e a absorção de nutrientes em milho em condições hidropônicas. Boletim de Pesquisa e Desenvolvimento, 184, 1–32. DOI

52.Ribeiro et al. (2018). Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian Journal of Microbiology, 49, 425.DOI

51. Fess & Benedito (2018). Organic versus Conventional Cropping Sustainability: A Comparative System Analysis. Sustainability, 10(1), 272. DOI

50. Kryvoruchko et al. (2018). An Iron-Activated Citrate Transporter, MtMATE67, Is Required for Symbiotic Nitrogen Fixation. Plant Physiology, 176(3), 2315–2329. DOI

49. Campos et al. (2017). Nitrogen release from urea with different coatings or urease inhibitor. Journal of the Science of Food and Agriculture, 97(11), 3800–3807. DOI

48. Martins et al. (2017). Impact of plant growth-promoting bacteria on grain yield and urea-15N recovery in maize. Plant and Soil, 422, 239–250. DOI

47. Mesquita et al. (2017). Efficiency of coated urea on controlling nitrogen availability. Bragantia, 76(2), 299–308. DOI: 10.1590/1678-4499.119DOI

46. Mira et al. (2017). Optimizing urease inhibitor usage to reduce ammonia emission following urea application. Agriculture, Ecosystems & Environment, 248, 112–122. DOI: 10.1016/j.agee.2017.07.022DOI

45. Rech et al. (2017). Additives incorporated into urea to reduce nitrogen losses. Pesquisa Agropecuária Brasileira, 52(9), 739–747. DOI

44. Silva et al. (2017). Volatilização de amônia com ureia + inibidores na cultura do abacaxi. Revista Ceres, 64(1), 39–46. DOI

43. Abreu et al. (2017). Maize endophytic bacteria as mineral phosphate solubilizers. Genetics and Molecular Research, 16, 1. DOI

42. Oliveira et al. (2017). Adubação fosfatada organomineral com pulverização de inoculante contendo microrganismos solubilizadores. Circular Técnica, 236, 1–16. DOI

41. Mattos et al. (2017). Sobrevivência de microrganismos solubilizadores de fosfato em fertilizantes organominerais granulados. Circular Técnica, 50, 1–20. DOI

40. Lana et al. (2017). Seleção em larga escala de bactérias produtoras do hormônio ácido indolacético (AIA), auxina associada à promoção de crescimento em plantas. Série Documentos, Embrapa Milho e Sorgo, 1, 1–12. DOI

39. Valentine et al. (2017). Adaptive strategies for nitrogen metabolism in phosphate deficient legume nodules. Plant Science, 256, 46–52. DOI

38. Wang et al. (2017). Diverse functions of multidrug and toxin extrusion (MATE) transporters in citric acid efflux and metal homeostasis. Plant Journal, 90, 79–95. DOI

37. Espinal et al. (2016). Utilization of nitrogen (15N) from urea and green manures by rice. African Journal of Agricultural Research, 11(19), 1698–1708. DOI

36. Guimarães et al. (2016). Value of copper, zinc, and oxidized charcoal for increasing forage efficiency of urea N uptake. Agriculture, Ecosystems & Environment, 231, 32–39. DOI

35. Horta et al. (2016). Urease Inhibitors of Agricultural Interest Inspired by Plant Phenolic Aldehydes. Journal of the Brazilian Chemical Society, 27(1), 175–181. DOI

34. Milagres et al. (2016). Soil N Losses by Denitrification Evaluated Using the N Tracer Method. Communications in Soil Science and Plant Analysis, 47(13–14), 1651–1660. DOI

33. Almeida et al. (2016). Adubação organomineral em associação com microrganismos solubilizadores de fósforo no milheto. Boletim de Pesquisa e Desenvolvimento, 147, 1–35. DOI

32. Gomes et al. (2016). Microrganismos promotores do crescimento de plantas. Série Documentos, Embrapa Milho e Sorgo, 208, 7–51. DOI

31.Kryvoruchko et al. (2016). MtSWEET11, a Nodule-Specific Sucrose Transporter. Plant Physiology, 171, 554–565. DOI

30. Brito et al. (2015). Design, syntheses and evaluation of benzoylthioureas as urease inhibitors of agricultural interest. RSC Advances, 5, 27540–27549.DOI

29. Bueno et al. (2015). Cuban zeolite as ammonium carrier in urea-based fertilizer pellets: An evaluation of physicochemical properties and N release. Sensors and Actuators B: Chemical, 212, 459–467. DOI

28. Mariano et al. (2015). Ammonia losses estimated from surface application of enhanced-efficiency fertilizers and urea in sugarcane straw. Revista Brasileira de Ciência do Solo, 39(1), 256–265. DOI

27. Soares et al. (2015). Enhanced-Efficiency Fertilizers in N2O Emissions from Urea in Sugarcane. Journal of Environmental Quality, 44(2), 423–430. DOI

26. Silva et al. (2015). Biossolubilização de potássio in vitro a partir da rocha fonolito por microrganismos do solo. Série Documentos, Embrapa Milho e Sorgo, 177, 1–30. DOI

25. Breuillin-Sessoms et al. (2015). Suppression of Arbuscule Degeneration in Mutants Is Dependent on the Ammonium Transporter 2 Family Protein AMT2;3. The Plant Cell, 27, 1352–1366.DOI

24. Mattos et al. (2014). Avaliação da atividade de fosfatases em cultivo de milheto adubado com fertilizantes granulados à base de cama de frango, rochas fosfatadas e microrganismos solubilizadores de fosfato. Congresso Nacional de Milho e Sorgo, 30. Sete Lagoas: ABMS. DOI

23. Abreu et al. (2014). Biossolubilização de fósforo por bactérias endofíticas de milho. Congresso Nacional de Milho e Sorgo, 30. Sete Lagoas: ABMS. DOI

22. Batista et al. (2014). Atividade da urease e arginase em solos com diferentes tratamentos sob o sistema de integração lavoura-pecuária na região do Cerrado. VI Seminário de Iniciação Científica PIBIC/BIC Júnior. Sete Lagoas: CNPMS. DOI

21. Morton et al. (2014). Potential for Industrial Application of Microbes in Symbioses that Influence Plant Productivity and Sustainability in Agricultural, Natural, or Restored Ecosystems. Industrial Biotechnology, 10, 347–353. DOI

20. Boaretto et al. (2013). Absorption of 15NH3 volatilized from urea by Citrus trees. Plant and Soil, 362, 61–74. DOI

19. Fortes et al. (2013). Contribution of nitrogen from sugarcane harvest residues and urea for crop nutrition. Scientia Agricola, 70(5), 305–312. DOI

18. Silva et al. (2013). Análise de componentes principais de atributos químicos de um solo adubado com dejetos suínos cultivado com milho. Congresso Brasileiro de Ciência do Solo, Florianópolis. Viçosa: SBCS. DOI

17. Sinharoy et al. (2013). The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago truncatula. The Plant Cell, 25, 3584–3601. DOI

16. Cantarella et al. (2012). Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology & Biochemistry, 52, 82–89. DOI

15. Paiva et al. (2012). Urea coated with oxidized charcoal reduces ammonia volatilization. Revista Brasileira de Ciência do Solo, 36(3), 939–947. DOI

14. Silva et al. (2012). Eficiência de microrganismos mineralizadores de fitato isolados da rizosfera de linhagens de milho eficientes e ineficientes para o uso de fósforo. Congresso Nacional de Milho e Sorgo, 29. Sete Lagoas: Sociedade Brasileira de Milho e Sorgo. DOI

13. Mattos et al. (2012). Sobrevivência em biopolímeros e potencial de bactérias solubilizadoras de fósforo in vitro. Congresso Nacional de Milho e Sorgo, 29, 1745–1751. Sete Lagoas: ABMS. DOI

12. Barbosa et al. (2012). Incorporação de novos acessos de microrganismos solubilizadores de fosfato à coleção de microrganismos multifuncionais da Embrapa Milho e Sorgo. Congresso Nacional de Milho e Sorgo, 29, 1758–1763. Sete Lagoas: ABMS. DOI

11. Mortimer et al. (2012). The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant and Soil, 1, 1. DOI

10. Alves et al. (2011). New methods to quantify NH3 volatilization from fertilized surface soil with urea. Revista Brasileira de Ciência do Solo, 35(5), 1639–1648. DOI

9. Bernardi et al. (2011). Yield, Quality Components, and Nitrogen Levels of Silage Corn Fertilized with Urea and Zeolite. Communications in Soil Science and Plant Analysis, 42(5), 561–570. DOI

8. Fortes et al. (2011). Recovery of Nitrogen (15N) by Sugarcane from Previous N Fertilization. Sugar Tech, 13, 123–128. DOI

7. Oliveira et al. (2011). Caracterização de híbridos de milho quanto à eficiência no uso de nitrogênio. Congresso Brasileiro de Melhoramento de Plantas. Búzios: Sociedade Brasileira de Melhoramento de Plantas.DOI

6. Ward et al. (2011). Phosphorus-deficiency reduces aluminium toxicity by altering uptake and metabolism of root zone carbon dioxide. Journal of Plant Physiology, 168, 459–465. DOI

5. Fess et al. (2011). Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. Sustainability, 3, 1742–1772. DOI

4. Cantarella et al. (2008) Ammonia volatilization from urease inhibitor-treated urea applied to sugarcane trash blankets. Scientia Agricola, v. 65, p. 397-401. DOI

3. Gava et al. (2005). Urea and sugarcane straw nitrogen balance in a soil-sugarcane crop system. Pesquisa Agropecuária Brasileira, 40(7), 689–695. DOI

2.Boaretto et al. (2004). Fate of 15N-urea applied to wheat-soybean succession crop. Bragantia, 63(2), 265–274. DOI

1.Muraoka et al. (2002). Eficiencia de abonos verdes y urea para arroz. Terra Latinoamericana, 20(3), 311–318. DOI